Функции нуклеоида бактерий 2

Функции нуклеоида бактерий 2

Функции нуклеоида бактерий

Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.

Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А — консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым — промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) — консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК — в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид

Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности — плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула — слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь — мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Читайте также:  Хромосомные нарушения – не допустить «опечатки» — Новости (Здоровье)

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары дисков — у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка — флагеллина (от flagellum — жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили (фимбрии, ворсинки) — нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны — несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми «мужскими» сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры

Споры — своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium — веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное — ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Нуклеоид бактерий: функции и методы выявления

В отличие от эукариот бактерии не имеют оформленного ядра, однако их ДНК не разбросана по всей клетке, а сосредоточена в компактной структуре, которую называют нуклеоидом. В функциональном отношении он представляет собой функциональный аналог ядерного аппарата.

Что такое нуклеоид

Нуклеоид бактерий — это область в их клетках, содержащая структурированный генетический материал. В отличие от ядра эукариот она не отделена мембраной от остального клеточного содержимого и не имеет постоянной формы. Несмотря на это генетический аппарат бактерий четко отграничен от цитоплазмы.

Сам термин означает «подобный ядру» или «ядерная область». Впервые эту структуру обнаружил в 1890 г. зоолог Отто Бючли, но ее отличия от генетического аппарата эукариот были выявлены аж в начале 1950-х годов благодаря технологии электронной микроскопии. Название «нуклеоид» соответствует понятию «бактериальная хромосома», если последняя содержится в клетке в единственном экземпляре.

Нуклеоид не включает в себя плазмиды, которые являются внехромосомными элементами бактериального генома.

Особенности нуклеоида бактерий

Обычно нуклеоид занимает центральный участок бактериальной клетки и ориентирован вдоль ее оси. Объем этого компактного образования не превышает 0,5 мкм 3 , а молекулярная масса варьирует от 1×10 9 до 3×10 9 дальтон. В определенных точках нуклеоид связан с клеточной мембраной.

В состав нуклеоида бактерий входят три компонента:

  • ДНК.
  • Структурные и регуляторные белки.
  • РНК.

ДНК имеет хромосомную организацию, отличную от эукариотической. Чаще всего нуклеоид бактерий содержит одну хромосому или несколько ее копий (при активном росте их количество достигает 8 и более). Этот показатель варьирует в зависимости от вида и стадии жизненного цикла микроорганизма. Некоторые бактерии имеют несколько хромосом с разным набором генов.

В центре нуклеоида ДНК укомплектована достаточно плотно. Эта зона недоступна для рибосом, ферментов репликации и транскрипции. Напротив, дезоксирибонуклеиновые петли периферической области нуклеоида напрямую контактируют с цитоплазмой и представляют собой активные участки бактериального генома.

Количество белкового компонента в нуклеоиде бактерий не превышает 10 %, что примерно в 5 раз меньше, чем в хроматине эукариот. Большая часть белков ассоциирована с ДНК и участвует в ее структурировании. РНК представляет собой продукт транскрипции бактериальных генов, которая осуществляется на периферии нуклеоида.

Читайте также:  Эдас-125 цена, Эдас-125 купить в Москве дешево, инструкция по применению, аналоги, отзывы

Генетический аппарат бактерий является динамическим образованием, способным менять свою форму и структурную конформацию. В нем отсутствуют характерные для ядра эукариотической клетки ядрышки и митотический аппарат.

Бактериальная хромосома

В большинстве случаев хромосомы нуклеоида бактерий имеют замкнутую кольцевую форму. Значительно реже встречаются линейные хромосомы. В любом случае эти структуры состоят из одной молекулы ДНК, которая содержит набор генов, необходимых для выживания бактерии.

Хромосомная ДНК укомплектована в виде суперспирализованных петель. Количество петель на хромосому варьирует от 12 до 80. Каждая хромосома является полноценным репликоном, так как при удвоении ДНК копируется целиком. Начинается этот процесс всегда из точки начала репликации (OriC), которая прикреплена к плазматической мембране.

Суммарная длина молекулы ДНК в хромосоме на несколько порядков превышает размеры бактерии, поэтому возникает необходимость в ее упаковке, но при сохранении функциональной активности.

В хроматине эукариот эти задачи выполняют основные белки — гистоны. Нуклеоид бактерий имеет в своем составе ДНК-связывающие белки, которые отвечают за структурную организацию генетического материала, а также влияют на экспрессию генов и репликацию ДНК.

К нуклеоид-ассоциированым белкам относятся:

  • гистоноподобные белки HU, H-NS, FIS и IHF;
  • топоизомеразы;
  • белки семейства SMC.

Последние 2 группы оказывают наибольшее влияние на суперспирализацию генетического материала.

Нейтрализация отрицательных зарядов хромосомной ДНК осуществляется за счет полиаминов и ионов магния.

Биологическая роль нуклеоида

В первую очередь нуклеоид необходим бактериям для того, чтобы хранить и передавать наследственную информацию, а также реализовывать ее на уровне клеточного синтеза. Иными словами, биологическая роль этого образования такая же, как у ДНК.

Другие функции нуклеоида бактерий включают:

  • локализацию и компактизацию генетического материала;
  • функциональную упаковку ДНК;
  • регуляцию метаболизма.

Структурирование ДНК не только позволяет молекуле уместиться в микроскопической клетке, но и создает условия для нормального протекания процессов репликации и транскрипции.

Особенности молекулярной организации нуклеоида создают условия для контроля клеточного метаболизма путем изменения конформации ДНК. Регуляция происходит за счет выпетливания определенных участков хромосомы в цитоплазму, что делает их доступными для ферментов транскрипции, или наоборот, втягивания внутрь.

Способы обнаружения

Существует 3 способа визуального обнаружения нуклеоида в бактериях:

  • световая микроскопия;
  • фазово-контрастная микроскопия;
  • электронная микроскопия.

В зависимости от способа подготовки препарата и метода исследования нуклеоид может выглядеть по разному.

Световая микроскопия

Для выявления нуклеоида при помощи светового микроскопа бактерии предварительно окрашивают таким образом, чтобы нуклеоид имел цвет, отличный от остального клеточного содержимого, — иначе эта структура не будет видна. Также обязательна фиксация бактерий на предметном стекле (при этом микроорганизмы погибают).

Через объектив светового микроскопа нуклеоид выглядит как бобовидное образование с четкими границами, которое занимает центральную часть клетки.

Методы окраски

В большинстве случаев для визуализации нуклеоида методом световой микроскопии используют следующие способы окраски бактерий:

  • по Романовскому-Гимзе;
  • метод Фельгена.

При окрашивании по Романовскому-Гимзе бактерии предварительно фиксируются на предметном стекле метиловым спиртом, а затем в течение 10-20 минут пропитываются красителем из равной смеси азура, эонина и метиленового синего, растворенных в метаноле. В результате нуклеоид становится фиолетовым, а цитоплазма — бледно-розовой. Перед микроскопией краска сливается, а препарат промывается дистиллятом и высушивается.

В методе Фельгена применяется слабо кислотный гидролиз. В результате освобожденная дезоксирибоза переходит в альдегидную форму и взаимодействует с фуксинсернистой кислотой реактива Шиффа. В итоге нуклеоид становится красным, а цитоплазма приобретает синий цвет.

Фазово-контрастная микроскопия

Фазово-контрастная микроскопия имеет большее разрешение, чем световая. Этот метод не требует фиксации и окраски препарата, — наблюдение происходит за живыми бактериями. Нуклеоид в таких клетках выглядит как светлая овальная область на фоне темной цитоплазмы. Более эффективным метод можно сделать, применив флюоресцентные красители.

Выявление нуклеоида при помощи электронного микроскопа

Существует 2 способа подготовки препарата для исследования нуклеоида под электронным микроскопом:

  • ультратонкий срез;
  • срез замороженной бактерии.

На электронных микрофотографиях ультратонкого среза бактерии нуклеоид имеет вид состоящей из тонких нитей плотной сетчатой структуры, которая выглядит светлее окружающей цитоплазмы.

На срезе замороженной бактерии после иммуноокрашивания нуклеоид выглядит как кораллоподобная структура с плотной сердцевиной и тонкими проникающими в цитоплазму выступами.

На электронных фотографиях нуклеоид бактерий чаще всего занимает центральную часть клетки и имеет меньший объем, нежели в живой клетке. Это связано с воздействием химических реактивов, используемых для фиксации препарата.

НУКЛЕОИД

ЦИТОПЛАЗМА (ЦП)

Участвуют в спорообразовании.

МЕЗОСОМЫ

При избыточном росте, по сравнению с ростом КС, ЦПМ образует инвагинаты (впячивания) — мезосомы.Мезосомы — центр энергетического метаболизма прокариотической клетки. Мезосомы являются аналогами митохондрий эукариот, но устроены проще.

Хорошо развитые и сложно организованные мезосомы характерны для Грам+ бактерий. У Грам- бактерий мезосомы встречаются реже и просто организованы (в форме петли). Полиморфизм мезосом отмечается даже у одного и того же вида бактерий. У риккетсий мезосомы отсутствуют.

Мезосомы различаются по размеру, форме и локализации в клетке.

По форме различают мезосомы:

– — везикулярные (имеющие форму пузырьков),

Читайте также:  Боль в верхней части спины — причины, болезни, диагностика, профилактика и лечение — Likar24

По расположению в клетке различают мезосомы:

– — образующиеся в зоне клеточного деления и формирования поперечной перегородки,

– — к которым прикреплен нуклеоид;

– — сформированные в результате инвагинации периферических участков ЦПМ.

Функции мезосом:

1. Усиливают энергетический метаболизм клеток, так как увеличивают общую «рабочую» поверхность мембран.

2. Участвуют в секреторных процессах (у некоторых Грам+ бактерий).

3. Участвуют вклеточном делении. При размножении нуклеоид движется к мезосоме, получает энергию, удваивается и делится амитозом.

Выявление мезосом:

1. Электронная микроскопия.

Строение.Цитоплазма (протоплазма)—содержимое клетки, окруженное ЦПМ и занимающее основной объем бактериальной клетки. ЦП является внутренней средой клетки и представляет собой сложную коллоидную систему, состоящую из воды (около 75%) и различных органических соединений (белков, РНК и ДНК, липидов, углеводов, минеральных веществ).

Располагающийся под ЦПМ слой протоплазмы более плотный, чем остальная масса в центре клетки. Фракция цитоплазмы, имеющая гомогенную консистенцию и содержащая набор растворимых РНК, ферментных белков, продуктов и субстратов метаболических реакций, получила название цитозоля. Другая часть цитоплазмы представлена разнообразными структурными элементами: нуклеоидом, плазмидами, рибосомами и включениями.

Функции цитоплазмы:

1. Содержит клеточные органеллы.

Выявление цитоплазмы:

1. Электронная микроскопия.

Строение. Нуклеоид— эквивалент ядра эукариот, хотя отличается от него по своей структуре и химическо­му составу. Нуклеоид не отделен от ЦП ядерной мембраной, не имеет ядрышек и гистонов, содержит одну хромосому, имеет гаплоидный (одиночный) набор генов, не способен к митотическому делению.

Нуклеоид расположен в центре бактериальной клетки, содержит двунитевую молекулу ДНК, небольшое количество РНК и белков. У большинства бактерий двунитевая молекула ДНК диаметром около 2 нм, длиной около 1 м с молекулярной массой 1–3х10 9 Да замкнута в кольцо и плотно уложена наподобие клубка. У микоплазм молекулярная масса ДНК наименьшая для клеточных организмов (0,4–0,8×10 9 Да).

ДНК прокариот построена так же, как и у эукариот (рис. 25).

Рис. 25. Строение ДНК прокариот:

А — фрагмент нити ДНК, образованной чередующимися остатками дезоксирибозы и фосфорной кислоты. К первому углеродному атому дезоксирибозы присоединено азотистое основание: 1 — цитозин; 2 — гуанин.

Б — двойная спираль ДНК: Д — дезоксирибоза; Ф — фосфат; А — аденин; Т — тимин; Г — гуанин; Ц — цитозин

Молекула ДНК несет множество отрицательных зарядов, так как каждый фосфатный остаток содержит ионизированную гидроксильную группу. У эукариот отрицательные заряды нейтрализуются образованием комплекса ДНК с основными белками — гистонами. В клетках прокариот гистонов нет, поэтому нейтрализация зарядов осуществляется взаимодействием ДНК с полиаминами и ионами Mg 2+ .

По аналогии с хромосомами эукариот бакте­риальная ДНК часто обозначается как хромосома. Она представлена в клетке в единственном числе, поскольку бактерии являются гаплоидными. Однако перед делени­ем клетки число нуклеоидов удваивается, а во время деления уве­личивается до 4 и более. Поэтому термины «нуклеоид» и «хромосома» не всегда совпадают. При действии на клетки определенных факторов (температуры, pH среды, ионизирующего излучения, солей тяжелых металлов, некоторых антибиотиков и др.) происходит образование множества копий хромосомы. При устранении воздействия этих факторов, а также после перехода в стационарную фазу в клетках обнаруживается по одной копии хромосомы.

Длительное время считали, что в распределении нитей ДНК бактериальной хромосомы не прослеживается никакой закономерности. Специальные исследования показали, что хромосомы прокариот — высокоупорядоченная структура. Часть ДНК в этой структуре представлена системой из 20–100 независимо суперспирализованных петель. Суперспирализованные петли соответствуют неактивным в данное время участкам ДНК и находятся в центре нуклеоида. По периферии нуклеоида располагаются деспирализованные участки, на которых происходит синтез информационной РНК (иРНК). Поскольку у бактерий процессы транскрипции и трансляции идут одновременно, одна и та же молекула иРНК может быть одновременно связана с ДНК и рибосомами.

Кроме нуклеоида в цитоплазме бактериальной клетки могут находиться плазмиды — факторы внехромосомной наследственности в виде дополнительных автономных кольцевых молекул двунитевой ДНК с меньшей молекулярной мас­сой. В плазмидах также закодирована наследственная информация, однако она не является жизненно необходимой для бактериальной клетки.

Функции нуклеиода:

1. Хранение и передача наследственной информации, в том числе о синтезе факторов патогенности.

Выявление нуклеоида:

Рис. 26. Нуклеоид стафилококка (трансмиссивная электронная микроскопия)

1. Электронная микроскопия: на электронограммах ультратонких срезов нуклеоид имеет вид светлых зон меньшей оптической плотности с фибриллярными, нитевидными структурами ДНК (рис. 26). Несмотря на отсутствие ядерной мембраны, нуклеоид довольно четко отграничен от цитоплазмы.

2. Фазово-контрастная микроскопия нативных препаратов.

3. Световая микроскопия после окраски специфическими для ДНК методами по Фельгену, по Пашкову или по Романовскому-Гимза:

– препарат фиксируют метиловым спиртом;

– на фиксированный препарат наливают краситель Романовского-Гимза (смесь равных частей трех красок — азура, эозина и метиленового синего, растворенных в метаноле) на 24 часа;

– краску сливают, промывают препарат дистиллированной водой, высушивают и микроскопируют: нуклеоид окрашивается в фиолетовый цвет и располагается диффузно в цитоплазме, окрашенной в бледно-розовый цвет.

Дата добавления: 2015-04-25 ; Просмотров: 8177 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Фрикадельки из говядины под молочным соусом Волшебная
Тефтели для детей В состав детских тефтелей входят почти все продукты, из которых готовятся и «взрослые». Так почему они детские?...
Фосфалюгель для детей инструкция по применению, отзывы о приеме при рвоте и поносе, ротавирусе
Фосфалюгель, гель, 16г №20 Клинико-фармакологическая группа Фармакологическое действие Антацидный препарат. Оказывает кислотонейтрализующее, обволакивающее, адсорбирующее действие. Снижает протеолитическую активность пепсина. Не...
Фосфалюгель инструкция по применению, от чего помогает, аналоги Лекарства
Фосфалюгель от чего помогает, инструкция по применению, состав, дозировка, аналоги для детей и взрослых Многие из нас хоть раз в...
Фронтит — причины, симптомы и лечение — Медкомпас
Лечение зеленого насморка Простудные заболевания, как правило, сопровождаются ринитом — воспалением слизистой носа, протекающим с выделением слизистого или гнойного секрета....
Adblock detector